Introduction to Mathematical Finance Dylan Possamaï

Practice questions 2020–2021

Proportional transaction costs

We consider the binomial financial market with a single period and two dates t = 0 and t = 1. The notations are the one used in the lectures.

However, unlike in the lectures, we suppose that for any transaction, the investor has to pay a fixed fee c > 0 per unit of risky asset S exchanged. In other words, when the investor buys Δ units of the risky asset S, he/she has to pay the transaction cost $c|\Delta|$, in addition to the cost of the assets.

As in the lectures, we denote by $X_1^{x,\Delta}$ the liquidative value of the portfolio with strategy (x, Δ) at time t = 1, *i.e.* the value that the investor gets at time t = 1 after **selling** (resp. **buying**) all the Δ shares of S that he/she holds (resp. has sold).

We aim at proving that there is no arbitrage opportunity if and only if

$$R + \frac{c(1+R)}{S_0} > d, \ R - \frac{c(1+R)}{S_0} < u.$$
(0.1)

1) Prove that

$$X_1^{x,\Delta} = \Delta S_1 + (x - \Delta S_0 - c|\Delta|)R - c|\Delta|,$$

for any strategy (x, Δ) .

- 2) Suppose that (0.1) is satisfied.
 - (a) Suppose that $\Delta \ge 0$. Prove that $\mathbb{P}[X_1^{0,\Delta} \ge 0] = 1$ implies $\Delta = 0$.
 - (b) Suppose that $\Delta \leq 0$. Prove that $\mathbb{P}[X_1^{0,\Delta} \geq 0] = 1$ implies $\Delta = 0$.
 - (c) Deduce that there is no arbitrage opportunity under condition (0.1).

3) We now consider the reverse implication.

- (a) Suppose that $R + \frac{c(1+R)}{S_0} \leq d$. Show that any $\Delta > 0$ defines an arbitrage opportunity.
- (b) Suppose that $R \frac{c(1+R)}{S_0} \ge u$. Show that any $\Delta < 0$ defines an arbitrage opportunity.
- (c) Conclude.
- 4) Is the condition (0.1) different from that of the classical binomial model? What does condition (0.1) become in the case c = 0?

Quadratic risk minimisation and associated price

We consider the one-period trinomial model seen in the lectures. We recall that the corresponding market consists of a non-risky asset with price S^0 satisfying

$$S_0^0 = 1, \ S_1^0 = R$$

and a risky asset whose price S_0 at time 0 is fixed and such that

$$\mathbb{P}(\{S_1 = uS_0\}) = p_1, \ \mathbb{P}(\{S_1 = dS_0\}) = p_2, \ \mathbb{P}(\{S_1 = S_0\}) = 1 - p_1 - p_2,$$

for some 0 < d < 1 < u and some $(p_1, p_2) \in (0, 1)^2$, with $p_1 + p_2 < 1$.

- 1) Recall what is the no-arbitrage condition in this market.
- 2) We consider an option with maturity 1 and payoff $h(S_1)$. For a given initial capital $x \in \mathbb{R}$, we consider the following minimisation problem.

$$q^{h}(x) := \inf_{\Delta \in \mathbb{R}} \mathbb{E}^{\mathbb{P}} \left[\left(X_{1}^{x,\Delta} - h(S_{1}) \right)^{2} \right]$$

Prove that the infimum above is attained at

$$\Delta^{\star}(x) := -\frac{\mathbb{E}^{\mathbb{P}}\left[(S_1 - S_0 R)(xR - h(S_1))\right]}{\mathbb{E}^{\mathbb{P}}\left[(S_1 - RS_0)^2\right]}$$

3) Deduce that

$$q^{h}(x) = \mathbb{E}^{\mathbb{P}}\left[(xR - h(S_{1}))^{2} \right] - \frac{\left(\mathbb{E}^{\mathbb{P}} \left[(S_{1} - RS_{0})(xR - h(S_{1})) \right] \right)^{2}}{\mathbb{E}^{\mathbb{P}} \left[(S_{1} - RS_{0})^{2} \right]}.$$

4) We now consider the problem

$$m_{\text{quad}}(h) := \inf_{x \in \mathbb{R}} q^h(x).$$

Prove that this minimum is uniquely attained at some point x^* .

5) Prove that

$$x^{\star} = \frac{1}{R} \left[q_1 h(uS_0) + q_2 h(dS_0) + (1 - q_1 - q_2) h(S_0) \right],$$

where

$$q_{1} := \frac{p_{1}}{\mathbb{V}\mathrm{ar}^{\mathbb{P}}[S_{1} - RS_{0}]} \left(\mathbb{E}^{\mathbb{P}} \left[(S_{1} - RS_{0})^{2} \right] - S_{0}(u - R) \mathbb{E}^{\mathbb{P}}[S_{1} - RS_{0}] \right),$$

$$q_{2} := \frac{p_{2}}{\mathbb{V}\mathrm{ar}^{\mathbb{P}}[S_{1} - RS_{0}]} \left(\mathbb{E}^{\mathbb{P}} \left[(S_{1} - RS_{0})^{2} \right] + S_{0}(R - d) \mathbb{E}^{\mathbb{P}}[S_{1} - RS_{0}] \right).$$

6) Under which condition(s) can x^* be interpreted as the expectation of the discounted payoff $h(S_1)$ under a specific risk-neutral measure? Comment and interpret.

Exercise 3: Jade Lizard strategy

A Jade Lizard strategy consists in buying a Call with maturity T and strike K_3 , selling another Call option on the same underlying asset with maturity T and strike K_2 and finally selling a Put option on the same underlying asset with maturity T and strike K_1 , such that

$$K_1 < K_2 < K_3$$
, and $K_3 - K_2 < K_1$.

Compute and represent both the total gain and the payoff of this strategy. What is its purpose?